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Abstract

We propose a novel family of decision-aware surrogate losses, called Perturbation
Gradient (PG) losses, for the predict-then-optimize framework. The key idea is to
connect the expected downstream decision loss with the directional derivative of a
particular plug-in objective, and then approximate this derivative using zeroth order
gradient techniques. Unlike the original decision loss which is typically piecewise
constant and discontinuous, our new PG losses is a Lipschitz continuous, difference
of concave functions that can be optimized using off-the-shelf gradient-based
methods. Most importantly, unlike existing surrogate losses, the approximation
error of our PG losses vanishes as the number of samples grows. Hence, optimizing
our surrogate loss yields a best-in-class policy asymptotically, even in misspecified
settings. This is the first such result in misspecified settings, and we provide
numerical evidence confirming our PG losses substantively outperform existing
proposals when the underlying model is misspecified.

1 Introduction

We study the contextual optimization problem

π∗(X) ∈ argmin
z∈Z

f∗(X)⊤z, f∗(X) ≡ E [Y | X] , (1)

where (X,Y ) ∈ X × Y are random variables, and Z ⊆ Rd is a known, potentially non-convex
feasible region. We work in a data-driven setting in which f∗ is unknown, but we observe i.i.d.
draws {(Xi, Yi) : i = 1, . . . , n} of (X,Y ). Problem (1) models applications in which we observe
a potentially informative context X before selecting the decision π(X) such as vehicle routing,
portfolio allocation, and inventory management [7, 5, 32]. Problem (1) has also been used as an
“optimization layer" in neural network architectures to model combinatorial decisions [26]. Through
a suitable transformation, it can also represent some, but not all, nonlinear problems like personalized
pricing (see Appendix A).

The predict-then-optimize framework focuses on plug-in policies for Problem (1). Given a function
f : X 7→ Y , the corresponding plug-in policy is

π̂(f(X)) ∈ argmin
z∈Z

f(X)⊤z, (2)

with ties broken by some pre-specified tie-breaking rule. Plug-in policies are attractive because they
separate the prediction procedure (f ) from the optimization procedure (Problem (2)). This decoupling
is especially useful when i) decisions z must satisfy hard constraints (enforced by Z), or ii) one has a
specialized algorithm for solving instances of Problem (2) (e.g., a custom vehicle-routing solver).

Given the form of π∗, a natural approach might be to learn an estimate f̂ of f∗ from the data, e.g.,
by minimizing the mean-squared error, and then compute π̂(f̂(X)). Such procedures are called
decision-blind since they do not leverage Problem (1) when learning f̂ .
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Figure 1: (Convergence under Misspecifi-
cation). Excess regret normalized by opti-
mal policy’s performance under the misspec-
ified setting of Section 4.1 (α = 1, m = 0).
PGB is our proposed loss. ETO is a decision-
blind approach that minimizes MSE. Other
benchmarks include: DBB [26], FYL [1],
and SPO+ [7]. Under misspecification, only
the PG losses have vanishing excess regret.
Error bars are 95% confidence intervals on
the mean over 100 trials.

The seminal paper Elmachtoub and Grigas [7] argues decision-aware techniques can be superior to
decision-blind ones. Given a hypothesis class F ⊆ YX , they propose solving minf∈F Regret(f)
where Regret(f) ≡ E

[
Y ⊤π̂(f(X))

]
− E

[
Y ⊤π̂(f∗(X))

]
. This is equivalent to solving

minf∈F E [ℓ(f(X), Y )] where ℓ(t, y) ≡ y⊤π̂(t). (3)

Growing empirical evidence supports the strength of decision-aware approaches [31, 27].

A challenge is that when Z is polyhedral or combinatorial, t 7→ ℓ(t, y) is a piecewise constant,
discontinuous map. Its gradient is either zero or undefined at all points. Hence, one cannot easily
apply a first-order method like stochastic gradient descent (SGD) to optimize Problem (3).

In this paper we propose a new family of surrogate losses to approximate ℓ(t, y) by connecting
ℓ(t, y) to the directional derivative of a particular plug-in function and using zeroth order gradients to
approximate this derivative. We call this family perturbation gradient (PG) losses. PG losses are
Lipschitz continuous, general purpose, and only require a black-box oracle which solves Problem (2).
Most importantly, their gradients are “informative” (c.f. Lemma 2.2); after replacing ℓ with a PG
loss, one can apply a first order method to Problem (3) or its empirical counterpart “out-of-the-box."

Previous authors have also proposed surrogates which satisfy some of these properties (see Sec-
tion 1.2). What distinguishes our work is that under mild assumptions on the distribution of (X,Y ),
the error of our surrogate in approximating ℓ(t, y) vanishes as n → ∞ with a rate that depends on the
complexity of F . More precisely, we prove that, for general Z , optimizing the empirical PGB loss (a
particular member of the PG family) induces an excess regret over the best-in-class policy of at most
Õp(

√
Rn + n−1/2) where Rn is the multivariate Rademacher complexity of F (Theorem 3.8). For

linear hypotheses with dim(X) = p, this bound reduces to Õp((dp/n)
1/4). When Z is polyhedral,

optimizing empirical PGB loss induces an excess regret of at most Õp(n
−1/2

√
ν log |Z∠|) , where

ν is VC linear subgraph dimension of F and Z∠ are the extreme points of Z (Theorem 3.8). Both
bounds vanish as n → ∞, implying that optimizing our PGB loss yields a best-in-class policy
asymptotically.

Critically – and this is the most distinctive feature of our work – our results hold even when f∗ ̸∈ F
(misspecified setting). To our knowledge, these are the first result of their kind for a differentiable
surrogate. Existing results on the predict-then-optimize framework [19, 14, 8]) require f∗ ∈ F
(the well-specified setting) and somewhat restrictive assumptions on the noise Y − f∗(X) (see
Section 1.2). These requirements are not simply a weakness in prior analysis. As seen in Fig. 1,
existing methods can have very poor performance under misspecification. The key issue is that the
justification for many of these losses tacitly relies on the fact that an optimal f should be such that
f(X) ≈ Y almost surely, but under misspecification, this is generally impossible. Hence, they do not
well-approximate the decision loss ℓ. See Fig. 2.

This poor performance is especially unfortunate, because misspecified settings are precisely those
where decision-aware learning offers the most benefit over decision-blind approaches [8, 3]. This is
for at least three reasons: First, because the solution mapping π̂(·) is piecewise constant, there may
exist f ̸= f∗ such that π̂(f(X)) = π̂(f∗(X)) almost surely [7, 34]. (Indeed, this appears to occur
in Fig. 1.) Hence, one might still achieve (near) zero regret by learning over a low-complexity F
in a decision-aware fashion, and, typically low-complexity hypothesis classes F are preferred for
tractability, interpretability, and strong generalization properties. Second, when every f must induce
some error, decision-aware learning seeks an f(·) such that π̂(f(X)) disagrees with π̂(f∗(X)) on
regions of the covariate space X that are not too costly in the decision-problem, while decision-blind
methods typically seek an f such that f(X) disagrees with f∗(X) on less probable regions of X
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Figure 2: (Comparing Surrogates under Misspecification). See Section 4.1 for setup (α = 1, m = 0).
Benchmarks are decision-loss (DL) ℓ, our PGB and PGC losses, Fenchel-Young Loss (FYL) [1],
SPO+ [7], and the learning-to-rank list loss ([21]. Left-panel: (n = 200) Only our PG losses closely
track the DL. Right Panels: As n increases, the DL and PG losses both become smoother.

[3]. Finally, [8, 14] suggest traditional decision-blind learning strictly dominates decision-aware
techniques in a well-specified setting (see Section 1.2), i.e, decision-aware learning loses most of its
advantages if f∗ ∈ F .

To be fair, the improved approximation quality of our PG losses comes at the cost of computational
complexity. Many existing surrogates are convex if F is a linear class. We can optimize these
surrogates over F in polynomial time. On the other hand, Elmachtoub and Grigas [7] shows that
solving the empirical counterpart of Problem (3) is NP-Hard (reduction from 0/1 classification).
Thus, these aforementioned surrogates cannot be expected to reliably find best-in-class policies
without additional assumptions on the data distribution unless P = NP.

By contrast, our proposed PG losses are non-convex, expressible as the difference of concave
functions. Optimizing such functions is well-studied [25, 30, 18], but is, in the worst-case, NP-Hard.
This is to be expected; if we seek a method that finds a best-in-class policy, it must contend with this
hardness. Importantly, some NP-Hard problems admit algorithms that find high-quality solutions
efficiently for most real-world instances. We argue our loss (combined with simple gradient descent
type methods) yields such a problem. Previous authors [26, 34] have also proposed non-convex
surrogates and shown that first-order methods still recover high-quality solutions.

Finally, we offer that convexity is often moot in applications. When using a nonlinear hypothesis
class (e.g., a neural network with more than 1 layer), even convex surrogates induce non-convex loss
functions. Optimizing these losses is theoretically no easier than optimizing our surrogate.

In summary, our PG losses represent a practically implementable and (the first) theoretically justified
approach to decision-aware learning in misspecified setting.

1.1 Contributions

• We propose a new family of surrogate losses called Perturbation Gradient (PG) losses for the
predict-then-optimize approach to Problem (1). Our surrogates are Lipschitz continuous and can be
expressed as the difference of concave functions.

• We show that the gradient of a PG loss evaluated at a sample point is an unbiased estimate of the
gradient of the expected loss (Lemma 2.2). Thus, unlike the decision loss ℓ, we can apply first-order
methods to minimize our expected surrogate or its ERM counterpart.

• We bound the uniform approximation error of our surrogates with respect to decision loss by a term
vanishing in n (Theorems 3.4 and 3.7). Thus, with more data, our loss becomes more accurate.

• We prove that the empirical minimizer of our PGB loss yields a best-in-class policy asymptotically,
even if the underlying hypothesis class is misspecified (Theorem 3.8). To our knowledge, ours is
the first surrogate for the predict-then-optimize framework with such a performance guarantee.

• We provide numerical evidence showing that minimizing our surrogate loss performs comparably
to other surrogates when the hypothesis class is well-specified, and substantively outperforms them
when the hypothesis class is misspecified.
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1.2 Related Work

Elmachtoub and Grigas [7] first proposed a convex, differentiable surrogate loss for Problem (3)
called the SPO+ loss leveraging a duality argument. Subsequent researchers have proposed other
approaches to surrogate creation including replacing the plug-in policy Problem (2) with a regularized
counterpart [32], creating a response-surface [28, 10], training a neural network to approximate
ℓ(t, y) non-parametrically [34], linearizing l(t, y) [26], and combining randomized-smoothing with
conjugate duality [1]. A recent computational study [31] compares many of these approaches and
found that SPO+ and the Fenchel-Young loss of [1] performed best or near-best on all benchmarks.

Despite the empirical strengths of decision-aware methods, their theoretical justification is less clear.
Few methods establish regret bounds. Wilder, Dilkina, and Tambe [32] and Berthet et al. [1] prove
that gradients of particular surrogates can be evaluated easily, but do not prove a regret guarantee
for the minimizer of those surrogates. On the other hand, El Balghiti et al. [6] and Hu, Kallus, and
Mao [14] prove generalization guarantees relating E [ℓ(f(X), Y )] to its empirical counterpart; hence,
if one finds an f ∈ F with small empirical loss, E [l(f(X), Y )] will also be small. But minimizing
the empirical counterpart to Problem (3) is computationally challenging. Jeong et al. [16] proposes
a symbolic reduction scheme for this task. However, the method only applies to linear f and does
not scale to large n. Most importantly, it is not amenable to first-order methods, so cannot be easily
integrated into neural architectures.

The strongest known regret bounds are for the SPO+ loss in the well-specified setting (f∗ ∈ F).
When the conditional distribution of Y |X is centrally symmetric around its mean, Elmachtoub and
Grigas [7] establish a Fisher-consistency result. Liu and Grigas [19] strengthen this result, establishing
(under similar assumptions) that if the multivariate Rademacher complexity of F is O(n−1/2), then
the empirical minimizer of the SPO+ loss has regret at most O(n−1/4).

That said, such results are perhaps unsatisfying because decision-blind methods typically dominate
decision-aware methods in well-specified settings. Hu, Kallus, and Mao [14] show that when f∗ ∈ F ,
the regret of a decision-blind approach that minimizes MSE converges to zero faster than the empirical
minimizer of Problem (3). Said differently, decision-aware methods likely offer the most benefit in
misspecified settings. Hence, these settings are arguably the most interesting.

Most closely related to our work are perturbation-based approaches for estimating out-of-sample
performance. These works each use Danskin’s theorem to “debias” a naive estimate of out-of-sample
performance. Ito, Yabe, and Fujimaki [15] and Guo, Jordan, and Zhou [11] each establish asymptotic
convergence of their estimators (without an explicit rate): Ito, Yabe, and Fujimaki [15] treats a
non-contextual setting and focuses on the ERM estimator. Guo, Jordan, and Zhou [11] treats a
causal inference setting. By contrast, Gupta, Huang, and Rusmevichientong [12, 13] establish a
finite-sample regret guarantee, but in a small-data, large-scale data regime with nearly-Gaussian
corruptions. In this paper, we focus on the traditional large-sample regime (n → ∞) with contexts.
Moreover, instead of “debiasing,” we perturbations to approximate a directional derivative which
exactly represents our out-of-sample loss.

1.3 Notation and Preliminaries

We write a ≲ b to mean that there exists a universal constant C such that a ≤ Cb. We denote the ℓ2
norm by ∥ · ∥. To simplify the presentation, we also make the following boundedness assumption:

Assumption 1.1 (Boundedness). There exists B > 0 such that maxz∈Z ∥z∥ ≤ B, and ∥Y ∥ ≤ 1,
almost surely.

2 A New Family of Surrogate Losses

Define the plug-in policy objective:

V (t) = min
z∈Z

t⊤z = t⊤π̂(t).

Evaluating V (t) only requires a black-box oracle for Problem (2). Since it is minimum of linear
functions, V (t) is concave.
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Our first key observation is that by Danskin’s Theorem [2, Prop B.22],

∂

∂λ
V (t+ λy) |λ=0 = y⊤π̂(t) = ℓ(t, y), (4)

where the left side is a derivative if π̂(t) is unique and a subgradient otherwise. We can form a family
of PG surrogates by considering different zeroth order approximations to the derivative on the left
(see [20, 24] for more on zeroth order gradients). We focus on two specific zeroth order gradients:

• Backward Differencing (PGB): ℓ̂bh(t, y) ≡ 1
h (V (t)− V (t− hy))

• Central Differencing (PGC): ℓ̂ch(t, y) ≡ 1
2h (V (t+ hy)− V (t− hy)) ,

for some user-defined h > 0. Intuitively, as h → 0, both ℓ̂bh(t, y) and ℓ̂ch(t, y) should better
approximate ℓ(t, y). (We formalize the tradeoff in h below.)

For intuition on the shape of PG losses, consider the special case where Z = [−1, 1], and Y ∈
{−1, 1}. Then, ℓ(t, y) = −sgn(ty), a step function. The PGB and PGC losses are both ramp losses
in this case, where the width of the ramp is controlled by h.

Other zeroth order gradient schemes are possible. For example, forward differencing yields the
surrogate from [26], motivated from a different perspective. This alternate perspective sheds light on
empirical performance. Indeed, our theoretical analysis suggests h should be small, tending to zero,
while [26] advocates for large h. Our analysis also shows forward differencing suffers optimistic bias
because it overestimates the derivative of a concave function. These features might explain the poor
performance of [26] in [31] benchmarks. We explore some of these issues in Appendix B, but fully
characterizing how the choice of zeroth order gradient affects surrogate quality is an open problem.

2.1 Properties of PG Losses

Using the structure of Problem (1), we prove some key properties of our surrogates.
Lemma 2.1 (Basic Properties). Suppose Assumption 1.1 holds. For any t, t′ ∈ Rd and y ∈ Y , the
PG losses are

a) Lipschitz, i.e.,
∣∣∣ℓ̂b(t, y)− ℓ̂b(t′, y)

∣∣∣ ≤ 2B
h ∥t− t′∥, and

∣∣∣ℓ̂c(t, y)− ℓ̂b(t′, y)
∣∣∣ ≤ B

h ∥t− t′∥.

b) Bounded, i.e.,
∣∣∣ℓ̂b(t, y)∣∣∣ ≤ B, and

∣∣∣ℓ̂c(t, y)∣∣∣ ≤ B.

c) Differentiable 1, i.e., ∇tℓ̂
b(t, y) = 1

h (π̂(t)− π̂(t−hy)), and ∇tℓ̂
c(t, y) = 1

2h (π̂(t+hy)− π̂(t−
hy)).

Finally, the backward difference upperbounds the true loss, i.e., ℓ(t, y) ≤ ℓ̂b(t, y).

A primary advantage of our PG losses over the original loss ℓ is that gradients are “informative."
More precisely, because ℓ is discontinuous, ∇tE [ℓ(t, Y )] ̸= E [∇tℓ(t, Y )], and ∇tℓ(t, Yj) is not an
unbiased estimate of ∇tE [ℓ(t, Y )]. Our surrogates do not have this problem.
Lemma 2.2 (Informative Gradients). Suppose Assumption 1.1 holds. For all t and Y ,
∇tE[ℓ̂bh(t, Y )] = E[∇tℓ̂

b
h(t, Y )]. Thus, ∇tℓ̂

b
h(t, Yj) is an unbiased estimate of ∇tE

[
ℓ̂bh(t, Y )

]
. The

same statements also hold ℓ̂ch.

Lemma 2.2 ensures that we can apply first order methods out-of-the-box to optimize our PG losses.

3 Performance Guarantees

For brevity, we focus on the backward PG loss. Analogous results hold for the central PG loss.

Key Intuition. The key challenge is bounding the error between our PGB loss ℓ̂bh and the decision
loss ℓ. For intuition, consider the expected error at a fixed f ∈ F , i.e., E

[
ℓ̂bh(T, Y )− ℓ(T, Y )

]
, where

1These expressions are gradients when π̂(t) and π̂(t± y) are unique optimizers, and elements of the Clarke
subdifferential otherwise.
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T = f(X). Define the auxiliary function H(λ) = E [V (T + λY )]. When π̂(T + λY ) is unique,
Lemma E.1 justifies switching the derivative and expectation yielding

H ′(λ) = E
[
d

dλ
V (T + λY )

]
= E

[
Y ⊤π̂(T + λY )

]
,

where the last equality is Danskin’s theorem [2, Prop B.22]. Thus, E
[
ℓ̂b(T, Y ) − ℓ(T, Y )

]
=

1
h (H(0)−H(−h))−H ′(0), i.e., the expected approximation error equals the error in estimating
the derivative of H .

If H is not sufficiently well-behaved, this error may not be small. Lemma E.2 proves that if H is
β-smooth, i.e., H ′(λ) is β-Lipschitz, then this error is at most βh. Since H entails expectation,
we intuit that it should be smooth if (T, Y ) has a “nice" density, similar to the intuition behind
randomized smoothing.

To quantify what “nice" might mean, write∣∣H ′(λ)−H ′(λ̄)
∣∣ =

∣∣E [Y ⊤π̂(T + λY )
]
− E

[
Y ⊤π̂(T + λ̄Y )

]∣∣ .
Since (t, y) 7→ Y ⊤π̂(T + λY ) is B-bounded by Lemma 2.1, the last difference is at most B ·
TV ((Y, T +λY ), (Y, T + λ̄)), where TV (·, ·) is the total variation distance between the two random
vectors. Hence, a “nice" density is any density such that distributions of (Y, T +λY ) and (Y, T + λ̄Y )
are close whenever λ and λ̄ are close. We expect this generally occurs whenever (T, Y ) admit
Lipschitz continuous densities, but can be shown to fail if, e.g., T is concentrated at a single point.

We make the above intuition formal in the next section.

3.1 Expected Approximation Error

We make the following assumption:
Assumption 3.1 (Lipschitz Log Conditional Density). Let g(· ; f, Y ) be the conditional density of
f(X) | Y . We assume that there exists a constant L > 0 such that log g(· ; f, Y ) is L-Lipschitz for
all f ∈ F and all Y almost surely.

As discussed above, Assumption 3.1 is sufficient to ensure the requisite TV distance is small, but not
necessary. We prefer Assumption 3.1 as it facilitates a short proof. Under this assumption, we have:
Lemma 3.2 (Expected Approximation Error). Suppose Assumptions 1.1 and 3.1 hold and h < 1

L .
Then, for any f ∈ F , 0 ≤ E[ℓ̂bh(f(X), Y )− ℓ(f(X), Y )] ≤ (e− 1)B · L · h.

3.2 Uniform Error Bounds

Combining Lemma 3.2 and Hoeffding’s inequality, yields a pointwise bound:
Corollary 3.3 (Pointwise Approximation Error). Fix some f ∈ F . Suppose Assumptions 1.1 and 3.1
hold and h < 1

L . Then, for any 0 < δ < 1
2 , with probability at least 1− δ,∣∣∣ 1n ∑n

j=1 ℓ̂
b
h(f(Xj), Yj)− E [ℓ(f(X), Y )]

∣∣∣ ≲ BLh+B
√
log(1/δ)/n.

As seen in Lemma 2.1, the Lipschitz constant of ℓ̂bh scales like 1/h. Hence, unlike other learning
methods, h does not control a bias-variance tradeoff; rather h controls a bias-computational com-
plexity tradeoff. Practically, we suggest taking h as large as the next largest term in the bound, i.e.
h = O(n−1/2) above, to maximize the smoothness without compromising the rate.

Corollary 3.3 captures the key ideas of our approach, but is insufficient to establish a regret guarantee;
we need a uniform error bound. To that end, we prove two results:

Our first generalization bound applies to any choice of Z . We leverage the Lipschitzness of ℓ̂bh
(Lemma 2.1a) to apply a vector contraction inequality from Maurer [22] and bound the Rademacher
complexity of our sample surrogate loss. A similar strategy is used in [19].

More specifically, define the multivariate Rademacher complexity

Rn (F) = E
[
R̂n (F)

]
= E

[
supf∈F

1
n

∑n
i=1 σ

⊤
i f(Xi)

]
, (5)

where σi = (σi1, . . . , σid) and σij are i.i.d. Rademacher random variables. Then, we have
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Theorem 3.4 (Uniform Error Bound for General Z). Suppose Assumptions 1.1 and 3.1 hold. For
any 0 < δ < 1

2 and 0 < h < 1
L , with probability at least 1− δ

supf∈F

∣∣∣ 1n ∑n
i=1 ℓ̂

b
h (f(Xi), Yi)− E [ℓ (f(X), Y )]

∣∣∣ ≲ BLh+ B2

h Rn(F) +B
√

log(1/δ)/n.

If dim(X) = p and F is a linear class, Rn(F) = Õ(
√

dp/n) [6]. Choosing h = O((dp/n)1/4)

yields an error of size Õp((dp/n)
1/4). This is same rate as Liu and Grigas [19], but also holds in the

misspecified setting where f∗ /∈ F .

Theorem 3.4 applies to general Z , but may be loose. We next present a stronger result when Z is
polyhedral by leveraging results from Hu, Kallus, and Mao [14] based on VC dimension:
Definition 3.5 (VC-Linear-Subgraph Dimension). The VC-linear-subgraph dimension of a class
of functions F ⊆ YX , is the VC dimension of the sets F◦ =

{{
(x, β, t) : β⊤f(x) ≤ t

}
: f ∈ F

}
in X × Rd+1, that is, the largest integer ν for which there exist x1, . . . , xν ∈ X , β1, . . . , βν ∈ Rd,
t1 ∈ R, . . . , tν ∈ R such that

∣∣{(I{β⊤
j f (xj) ≤ tj

}
: j = 1, . . . , ν

)
: f ∈ F

}∣∣ = 2ν .

We make the following assumption:
Assumption 3.6 (Bounded VC Dimension). The VC-linear-subgraph dimension of the class F̄ ={
f̄ : f̄(x, y) = f(x) + hy, for f ∈ F , h ∈ R

}
is at most ν.

We obtain the following bound for polyhedral Z , where Z∠ is the set of extreme points of Z .

Theorem 3.7 (Uniform Error Bound for Polyhedral Z). Suppose Assumptions 1.1, 3.1 and 3.6 hold.
For any 0 < δ < 1

2 and 0 < h < 1
L , with probability at least 1− δ,

supf∈F

∣∣∣ 1n ∑n
i=1 ℓ̂

b
h (f(Xi), Yi)− E [ℓ (f(Xi), Yi)]

∣∣∣ ≲ BLh + B
√

ν log(|Z∠|+1) log(1/δ)
n .

Choosing h = O(n−1/2) yields a bound of size Op(n
−1/2) which matches the generalization error

of ℓ from [14, 6]. Thus, for polyhedral Z , our surrogate converges no slower than the empirical loss,
but is more computationally tractable.

3.3 Excess Regret Bounds

We next transform the uniform bounds of the previous section to bounds on excess regret. Define

ERegret(f) ≡ E
[
Y ⊤π̂(f(X))

]
− E

[
Y ⊤π̂(fOR(X))

]
, where fOR ∈ argminf∈F Regret(f).

Excess regret measures regret relative to the best-in-class policy fOR, not the full-information
optimum f∗. For a fixed h < 1

L , define the empirical minimizer of PGB loss f̂h ∈
argminf∈F

1
n

∑n
i=1 ℓ̂

b
h (f(Xi), Yi) . Then, we have the following:

Theorem 3.8 (Excess Regret Bounds).

i) Suppose the assumptions of Theorem 3.4 hold. Then, ERegret(f̂h) ≲
√
B3LRn(F) + B√

n
.

ii) Suppose the assumptions from Theorem 3.7 hold. Then, ERegret(f̂h) ≲ B
√

ν log(|Z∠|+1)
n .

For many hypothesis classes, the multivariate Rademacher complexity is vanishing in n. Hence, both
bounds are vanishing in n and f̂h achieves best-in-class performance asymptotically.

4 Numerical Experiments

We compare learning a linear hypothesis class with our PG losses (PGB and PGC) to surrogates
currently implemented in the PyEPO Python package [31]. Specifically, we benchmark against: SPO+
[7], DBB [26], FYL [1], and the family of LTR losses [21]. Additionally, we also benchmark against
a“decision-blind" two stage policy that first minimizes the least-squares loss and then implements

7



the corresponding plug-in policy (ETO). We optimize each surrogate using ADAM via the PyEPO
framework. All methods are trained for a total of 100 epochs, and we select the best model found
in those 100 epochs based on validation set of size 200. For PG losses, we initialized at the
SPO+ solution and choose h from a small grid of values based on validation set performance.
Future computational experiments might explore the effect of alternate initializations. We do not
add additional regularization or smoothing to any of the surrogates. See Appendix C for other
implementation details.

Our metric of interest is the normalized excess regret (E
[
Y ⊤ (π∗(X)− π̂(X))

]
/E
[
Y ⊤π∗(X)

]
),

where we have normalized by the optimum policy (c.f. Problem (1)) for interpretability.

4.1 Simple Misspecification Experiment

In our first experiment, we let Z ≡ {0, 1}. We let X ∼ Unif(0, 2) and

f∗(x) =

{
−4x+ 2, for x ∈ [0, 0.55)

m(x− 0.55)− 0.2, for x ∈ [0.55, 2]

The function is piecewise linear with one piece that has a slope of −4 and another piece with a
slope of m ∈ [0,−4] (an elbow). The change point is at x = 0.55 where the two functions meet at
−0.2 (see Fig. 7 in Appendix D). Intuitively, m controls the degree of misspecification; at m = −4,
f∗ ∈ F and the problem is well-specified. At m = 0, the problem is maximally misspecified.

We generate synthetic data as Y = f∗(X) + ϵα. We define ϵα =
√
α (ζ − 0.5) +

√
1− αγ where

α ∈ [0, 1], ζ is an exponential random variable with mean 0.5, and γ ∼ N (0, 0.25). By construction
ϵ is mean-zero noise with variance 0.25. The value of α ̸= 0, ϵ controls how asymmetric the noise is.
Note, when α ̸= 0, the theoretical performance guarantees on SPO+ from [19] do not apply.

Results. Figure 1 plots the relative regret for m = 0 and α = 1, that is, the most misspecified setting
with the most asymmetric noise ϵ. Beyond highlighting the superior performance of the PG losses
in misspecified settings, Fig. 1 also shows the choice of finite difference approximation (backward
or central) also impacts performance. Intuitively, central differencing likely outperforms backward
differencing because in standard, deterministic settings, central finite differencing has error O(h2)
relative to the true derivative, while backward differencing has error O(h) [17]. This intuition can be
made formal in our setting by adapting Lemma 3.2, but we omit the details for brevity.
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Figure 3: (SPO+ Comparisons) The left figure plots the excess regret normalized by the optimal
policy’s performance as we vary m for n = 80 and α = 1. The right figure plots the same value as
we vary α for n = 200. When α = 0 the noise is centrally symmetric and when α = 1 the noise is
the most asymmetric. Error bars are 95% confidence intervals on the mean over 100 trials.

The left panel of Fig. 3 in Appendix D studies the effect of increasing degrees of misspecification.
We limit the benchmarks to ETO and SPO+ as other methods are qualitatively similar. We find that
(as argued in the introduction), in well-specified settings (m = −4), the benefits of decision-aware
learning may be small. All methods (including decision-blind ETO) achieve low regret, even for small
n. In our experiments, even for n = 20 the relative regret was less than 0.6% across all methods.
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On the other hand, as the degree of misspecification grows, decision-aware methods have an advantage.
However, we see that SPO+ is nearly as susceptible as to misspecification as decision-blind approaches
since the relative regret also increases rapidly. By contrast, the relative regret for our PG losses
increases more slowly. We stress, this experiment fixes n. As n → ∞, our theory shows the regret of
the PG losses tends to best-in-class as in Fig. 1.

The right panel of Fig. 3 studies how the noise distribution impacts the relative regret since all prior
known performance guarantees for SPO+ require strong assumptions on the noise [7, 19]. The
plot suggests that requiring a symmetric noise is not simply a weakness in the analysis of SPO+,
but fundamental to the method. As the noise becomes less symmetric, the performance of SPO+
degrades. Even when the assumption is satisfied (α = 0), we see SPO+ is still significantly impacted
by misspecification. By contrast, the PG losses perform similarly as the shape of the noise varies.

4.2 Shortest Path Experiments

Random Arc Costs. We first replicate the shortest path experiment from [7, 31] on a 5 × 5 grid
graph. We let X ∼ N (0, I5) and for each edge j, and take

f∗
j (x) =

1

3.56

[(
1√
5
(B∗x)j + 3

)6

+ 1

]

where B∗ ∈ {0, 1}40×5 has i.i.d. Bernoulli(0.5) entries (drawn once and fixed throughout). We
consider two different data generation mechanisms: i) Multiplicative noise, i.e., Yj = f∗

j (X)(1 + ϵj)
where ϵj are i.i.d Unif[−.3, .3]. This choice closely mirrors the original experiment of [7]. ii)
Additive Gaussian noise, i.e., Yj = f∗

j (X) + εj where εj ∼ N (0, 0.32).

Figure 8 in the Appendix D compares the PG losses to the best two surrogates in our experiments,
FYL [1] and SPO+ [7]. Here PGF represents a zeroth order gradient using forward differencing and is
equivalent to the method of [26] but with a small h as opposed to a large h. Despite the non-convexity,
minimizing our PG losses with first order methods yields comparable performance to FYL and SPO+
(convex methods). In other words, they do not seem to get stuck in local minimima. For small n, we
do seem some distinction, which is likely because our losses are less smooth (see the right figure of
Fig. 2).

Harder Example with Planted Arcs. Because arc costs are completely at random in the previous
example, there are likely many paths with near-optimal length. We next consider a harder instance
where we hide a unique good path.

(a) Safe and Risky Path

Gaussian, Noise-Halfwidth = 0.3 Uniform, Noise-Halfwidth = 0.3
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0

2

4

6

Training Size (n)

N
or

m
al

iz
ed

E
xc

es
s

R
eg

re
t(

%
)

2-Stage LR
PGB
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(b) Performance

Figure 4: Harder Shortest Path. a) One of the two planted paths will be optimal depending on value
of X6. All other arcs strictly worse. b) Normalized Excess Regret as we vary the training samples.
Error bars are 95% confidence intervals on the mean over 100 trials.

Specifically, we now take X ∈ R6 where X1:5 ∼ N (0, I5) and X6 ∼ Unif[0, 2]. In Fig. 4a, we have
a safe (red) path and a risky (blue) path. For red arcs, f∗

j (x) = 2 for all x. For the blue arcs (risky
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Figure 5: (Portfolio Optimization) We plot
the excess regret normalized by optimal pol-
icy’s performance as we vary the number of
training samples. Error bars are 95% confi-
dence intervals on the mean over 100 trials.

path), f∗
j (x) = 4x6 if 0 ≤ x6 ≤ 0.55 and f∗

j (x6) = 2.2 otherwise. For all other arcs, we take

f∗
j (x) =

1

3.56

[(
1√
5
(B∗x)j + 3

)6

+ 1

]
+ 2.2,

which is similar to previous experiment but shifted up by 2.2. Consequently, either the red path or
the blue path is optimal, depending on the value of X6. The observed Y values are generated as
before by adding either multiplicative uniform or additive Gaussian noise. A good method thus must
first identify these two paths as the best options (despite the noise) and choose between them (by
learning the relationship to X6). In this harder setting, PG losses offer a significant benefit. Figure 9
in Appendix D shows this performance is relatively robust to the choice of h.

4.3 Portfolio Experiment

We study the same portfolio optimization problem as [7, 28, 34] but use real data, specifically the
12 Fama French Industry Sector Portfolios from the Fama French Library [9]. These portfolios
are indices representing monthly returns of different asset classes and realistically mirror the asset
allocation problem faced by wealth managers. We sample a month t at random from the last 10 years,
and let Y = rt be the return of the d = 12 indices, and let X = rt−1 +N (0, 0.5Σ) (p = 12) where
Σ is the covariance of rt over those 10 years. The additional noise lowers the signal-to-noise ratio
while maintaining the correlation matrix of X and makes the problem harder.

As one can see in Fig. 5, because of the low signal-to-noise ratio, all methods induce significant regret
to the optimum, but both PGB and PGC are notably stronger.

5 Conclusion

In this paper we proposed a novel family of surrogate losses for the predict-then-optimize framework
that can be optimized using off-the-shelf gradient methods. Most importantly, the approximation
error of these surrogates vanishes as n → ∞. Hence, optimizing our surrogate yields a best-in-class
policy asymptotically, even in misspecified settings. Our PG losses are the first proposed surrogates
with this property and substantively outperform other methods in misspecified settings.

The family of PG losses arises from different approaches to approximating a derivative. As mentioned,
an interesting open question is identifying the best-possible choice of approximation. We also believe
that better understanding the role of h in trading off between bias and computational complexity
might shed light on improve algorithms and tuning procedures.
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[26] Marin Vlastelica Pogančić et al. “Differentiation of blackbox combinatorial solvers”. In:
International Conference on Learning Representations. 2019.

[27] Utsav Sadana et al. A Survey of Contextual Optimization Methods for Decision Making under
Uncertainty. 2023. arXiv: 2306.10374 [math.OC].

[28] Sanket Shah et al. Decision-Focused Learning without Differentiable Optimization: Learning
Locally Optimized Decision Losses. 2022. arXiv: 2203.16067 [cs.LG].

[29] Shai Shalev-Shwartz et al. “Learnability, stability and uniform convergence”. In: The Journal
of Machine Learning Research 11 (2010), pp. 2635–2670.

[30] Xinyue Shen et al. “Disciplined convex-concave programming”. In: 2016 IEEE 55th conference
on decision and control (CDC). IEEE. 2016, pp. 1009–1014.

[31] Bo Tang and Elias B Khalil. “PyEPO: A PyTorch-based End-to-End Predict-then-Optimize
Library for Linear and Integer Programming”. In: arXiv preprint arXiv:2206.14234 (2022).

[32] Bryan Wilder, Bistra Dilkina, and Milind Tambe. “Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. 2019, pp. 1658–1665.

[33] Yibo Zeng and Henry Lam. “Generalization bounds with minimal dependency on hypothesis
class via distributionally robust optimization”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 27576–27590.

[34] Arman Zharmagambetov et al. “Landscape Surrogate: Learning Decision Losses for Mathe-
matical Optimization Under Partial Information”. In: ICML 2023 Workshop on Differentiable
Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators. 2023.
URL: https://openreview.net/forum?id=qGzlOO27Cn.

12

https://arxiv.org/abs/2112.03609
https://arxiv.org/abs/2112.03609
https://proceedings.neurips.cc/paper_files/paper/2014/file/50905d7b2216bfeccb5b41016357176b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/50905d7b2216bfeccb5b41016357176b-Paper.pdf
https://arxiv.org/abs/2306.10374
https://arxiv.org/abs/2203.16067
https://openreview.net/forum?id=qGzlOO27Cn


-0.2

0.0

0.2

0.4

-1.0 -0.5 0.0 0.5 1.0

β0

(b)

L
os

s

PGF

DL

PGC

PGB

Figure 6: (Comparing Zeroth Order Gradi-
ents). PGC, PGB, and PGF all approximate
the decision loss (DL), but PGB is a pes-
simistic bound, while PGF is an optimistic
bound. Here the optimism causes PGF to
choose the wrong policy.

Appendix / Supplemental Material

A Reformulating Nonlinear Problems

Through an appropriate transfomation of variables, some nonlinear optimization problems can be
rewritten in the form Problem (1), and, thus, are amenable to our approach.

Consider the problem

π∗(X) ∈ argmin
z∈Z

f∗(X)⊤g(z),

where f∗(X) = E [Y | X] and g(·) is a fixed, known, vector-valued function. This problem is
equivalent to the problem

min
z̄

f∗(X)⊤z̄

s.t. z̄ ∈ Z̄ ≡ {g(z) : z ∈ Z},

which is of the requisite form for our analysis. Moreover, our algorithms only require access to an
oracle which can compute π̄(f(X)) ∈ argminz̄∈Z̄ f(X)⊤z̄ for any f . Often, this is accomplished
by solving π(f(X)) ∈ argminz∈Z f(X)⊤z and then returning g(π(f(X))).

Gupta, Huang, and Rusmevichientong [12] use this reduction to model a personalized pricing problem
(see Example 2.3 of their paper).

B Comparing Zeroth Order Gradient Schemes

In this section we provide a brief comparison of the forward differencing scheme to backwards and
central differencing. The key distinction is that since V (·) is concave, forward differencing creates
a surrogate that optimistically underestimates the true loss (forward differences underestimate the
derivative of concave functions) whereas backward differencing pessimistically overestimates the
true loss. Some authors [4, 33] have shown that pessimism can improve learning, and we observe a
similar phenomenon.

Figure 6 provides an illustration. We consider the same misspecified data setup as Section 4.1 (α = 1,
m = 0) and take n = 200. We plot the decision loss (DL) ℓ, and our PGB, PGF, and PGC losses, for
the plug-in class F = {−0.1x + B0 : B0 ∈ [−1, 1]}. Because PGF optimisticaly underestimates
loss, it suggests the policy β0 = .1, which actually induces significant regret. By contrast, backwards
differencing is pessimistic and suggests the policy β0 = .98 which is essentially optimal. Central
differencing is neither optimistic nor pessimistic, but still suggests a good policy β0 = .99.

C Implementation Details

For our numerical experiments we leverage the PyEPO framework which was developed using
PyTorch. For our experiments, we utilize Adam with learning rate 0.01 to optimize the training losses.
We run Adam over 100 epochs with a batch size of 32 for each surrogate loss. For non-PG loss
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surrogates we use the recommended parameters provided by PyEPO. For our PG losses, we tune h
by validating with a hold out set of training 200 samples. We note that similar results were obtained
by validating against the training decision loss. Additionally, we initialize the PG losses at the SPO+
solution.

To compute the expected regret, we generated a test set of 10000 samples and use it to estimate the
relative regret described in Section 4.

Some of our experiments were run on a high performance computing cluster administred by the
University of Southern California’s Center for Advanced Research Computing (CARC). The cluster
facilitated multiple simulation runs of the experiments. However, a significant portion of the experi-
ments in the paper (that did not require multiple Monte Carlo runs) were run on a Macbook Pro with
an Apple M3 Max Chip with 96 GB Memory.

D Additional Figures
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Figure 7: (Synthetic Data Generation from
Section 4.1) Observations of (Xi, Yi) for
m = −4 (left) and m = 0 (right). Red
line is f∗(X) for each setting.
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Figure 8: (Shortest Path, Random Arc Costs) Excess regret normalized by optimal policy’s perfor-
mance as we vary the number of training samples. Error bars are 95% confidence intervals on the
mean over 100 trials.

E Omitted Proofs

E.1 Proof for Lemma 2.1

Proof. We first prove (a), the Lipschitz property. We first claim V (·) is B Lipschitz, since

V (t)− V (s) = t⊤π̂(t)− s⊤π̂(s) = t⊤ (π̂(t)− π̂(s))︸ ︷︷ ︸
≤0, by optimality of π̂(t)

+(t− s)
⊤
π̂(s)

≤ ∥t− s∥∥π̂(s)∥ ≤ B∥t− s∥,
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n ep_type h avg std

800 normal 0.001 0.050 0.008
800 normal 0.035 0.049 0.008
800 normal 0.188 0.048 0.008
800 normal 0.434 0.049 0.013

800 unif 0.001 0.074 0.009
800 unif 0.035 0.073 0.009
800 unif 0.188 0.072 0.010
800 unif 0.434 0.076 0.017

1600 normal 0.001 0.048 0.005
1600 normal 0.025 0.047 0.004
1600 normal 0.158 0.046 0.004
1600 normal 0.398 0.048 0.012

1600 unif 0.001 0.070 0.006
1600 unif 0.025 0.070 0.006
1600 unif 0.158 0.068 0.006
1600 unif 0.398 0.071 0.015

(a) Validation Performance

n ep_type h avg std

800 normal 0.001 0.006 0.006
800 normal 0.035 0.005 0.006
800 normal 0.188 0.004 0.006
800 normal 0.434 0.005 0.011

800 unif 0.001 0.007 0.007
800 unif 0.035 0.006 0.007
800 unif 0.188 0.006 0.008
800 unif 0.434 0.009 0.015

1600 normal 0.001 0.003 0.002
1600 normal 0.025 0.003 0.002
1600 normal 0.158 0.002 0.002
1600 normal 0.398 0.003 0.010

1600 unif 0.001 0.004 0.003
1600 unif 0.025 0.004 0.003
1600 unif 0.158 0.002 0.003
1600 unif 0.398 0.005 0.011

(b) Normalized Excess Regret

Figure 9: (Dependence on h, Planted Shortest Path Experiment.) We compare the performance
of the policy learned by the PGB loss for different values of h across the 100 runs. a) Shows
performance on Valiation set. For ease of comparison, we have scaled the validation performance and
presented

(∑nval

i=1 Y ⊤
i (π̂(f(Xi))− π̂(f∗(Xi)))

)
/
(∑nval

i=1 Y ⊤
i π̂(f∗(Xi))

)
. b) Shows performance

out of sample. This out-of-sample performance is relatively flat in h, suggesting the precise choice of
h does not matter much in this example.

where the last inequality follows from Assumption 1.1. A symmetric argument holds for V (s)−V (t)
proving V is B Lipschitz.

Returning to ℓ̂b(t, y), write∣∣∣ℓ̂bh(t, y)− ℓ̂bh(t
′, y)

∣∣∣ = ∣∣∣∣V (t)− V (t− hy)

h
− V (t′)− V (t′ − hy)

h

∣∣∣∣
≤ |V (t)− V (t′)|

h
+

|V (t′ − hy)− V (t− hy)|
h

≤ 2B |t− t′|
h

.

An entirely analogous argument holds for ℓ̂ch(t, y).

We next prove (b), the boundededness property. Write∣∣∣ℓ̂bh (t, y)∣∣∣ = |V (t)− V (t− hy)|
h

≤ B∥hy∥
h

= B∥y∥

Again, an analogous argument holds for ℓ̂ch(t, y). This completes the proof for (b)

The proof of (c) follows directly from applying Danskin’s Theorem [2, Prop B.22].

To prove (d), we see

ℓ̂bh (t, y)− ℓ (t, y) =
V (t+ hy)− V (t)

h
− y⊤π̂(t)

=
(t+ hy)

⊤
π̂(t+ hy)− (t+ hy)

⊤
π̂(t)

h
≥ 0

where the last inequality holds by optimality of π̂(t+ hy). Rearranging proves the result for (d).
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E.2 Proof of Lemma 2.2.

Proof. We apply the dominated convergence theorem. Let ei ∈ Rd be the ith coordinate vector. Then,

∂tiE
[
ℓ̂bh(t, Y )

]
= lim

δ→0
E
[
1

δ
(ℓ̂bh(t+ δ, Y )− ℓ̂bh(t, Y ))

]
(6)

Let Wδ ≡ 1
δ (ℓ̂

b
h(t+ δ, Y )− ℓ̂bh(t, Y )). Then, by the Lipschitz property of Lemma 2.1, |Wδ| ≤ 2B

h ,
and limδ→0 Wδ = ∂ti ℓ̂

b
h(t, Y ) almost surely. The result then holds for the ith partial derivative of ℓ̂bh

from the dominated convergence theorem. Since i was arbitrary, it holds for all i = 1, . . . , d, and
thus holds for the gradient. An analogous proof holds for ℓ̂ch.

E.3 Auxiliary Lemmas from Section 3

Lemma E.1 (Interchange Derivative for H). Suppose Assumption 1.1 holds and that the optimizer
π̂(T + λY ) is unique almost surely. Then H ′(λ) = E

[
d
dλV (T + λY )

]
.

Proof. We use the bounded convergence theorem. Write

H ′(λ) = lim
δ→0

H(λ+ δ)−H(λ)

δ

= lim
δ→0

E
[
V (T + (λ+ δ)Y )− V (T + λY )

δ

]
.

Because V is B-Lipschitz,
∣∣∣V (T+(λ+δ)Y )−V (T+λY )

δ

∣∣∣ ≤ ∥Y ∥ ≤ 1. By the bounded convergence
theorem we can interchange the limit and expectation yielding,

H ′(λ) = E
[
lim
δ→0

V (T + (λ+ δ)Y )− V (T + λY )

δ

]
.

Since π̂(T + λY ) is unique, Danskin’s theorem [2, Prop B.22] confirms V (T + λY ) is differentiable,
and the above inner limit converges to the derivative d

dλV (T + λY ).

Lemma E.2 (Error of Backward Finite Difference). Suppose H is differentiable on [λ− h, λ], and
β-smooth. Then, ∣∣∣∣H ′(λ)− 1

h
(H(λ)−H(λ− h))

∣∣∣∣ ≤ βh.

Proof. By the mean-value theorem, 1
h (H(λ)−H(λ− h)) = H ′(λ− h̄) for some 0 ≤ h̄ ≤ h. Thus,∣∣∣∣H ′(λ)− 1

h
(H(λ)−H(λ− h))

∣∣∣∣ =
∣∣H ′(λ)−H ′(λ− h̄)

∣∣ ≤ βh̄,

by β-smoothness. Upper bounding h̄ by h completes the proof.

E.4 Proof for Lemma 3.2

Our first observation is that the error in our surrogate is bounded by the solution stability of the policy.
A similar bound is used in Gupta, Huang, and Rusmevichientong [13] in a different context:
Lemma E.3 (Solution Stability Bounds Error). For any t, y, h,

0 ≤ ℓ̂bh(t, y)− ℓ(t, y) ≤ y⊤ (π̂(t− hy)− π̂(t))︸ ︷︷ ︸
Solution Stability

In words, solution stability measures how much the policy changes given small perturbation hy. No-
tions of stability appear throughout the machine learning literature and are fundamental to learnability
[29]. Lemma E.3 relates the error of our surrogate to this fundamental quantity. We stress the relation
holds for any t, h, y.
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Proof. The first inequality was proven in Lemma 2.1. For the second, note that V (t) = t⊤π̂(t).
Hence by rearranging,

ℓ̂bh(t, y)− ℓ(t, y) =
1

h
(V (t)− V (t− hy))− y⊤π̂(t)

=
1

h

(
t⊤(π̂(t)− π̂(t− hy)

)
+ y⊤(π̂(t− hy)− π̂(t))

≤ y⊤(π̂(t− hy)− π(t)),

by the optimality of π̂(t).

To bound the expected approximation error in Lemma 3.2, we require the following elementary result:

Lemma E.4 (Density Ratio Bound). Suppose Assumption 3.1 holds. Then, for any t, t′ such that
∥t− t′∥ ≤ 1/L, we have ∣∣∣∣g(t′; f, Y )

g(t; f, Y )
− 1

∣∣∣∣ ≤ (e− 1)L∥t− t′∥.

Proof. Let g(t) ≡ g(t; f, Y ). By the convexity of the exponential,

exp(x) ≤ 1 + (e− 1)x ∀0 ≤ x ≤ 1, and exp(x) ≥ 1 + x ∀x. (7)

Let s(t) = log g(t). Then,

log

(
g(t′)

g(t)

)
= s(t′)− s(t) ≤ L∥t′ − t∥

Taking the exponential of both sides and subtracting 1, we have

g(t′)

g(t)
− 1 ≤ exp (L∥t′ − t∥)− 1

≤ (e− 1)L∥t′ − t∥,

where the last inequality follows from Eq. (7) and our assumption that ∥t− t′∥ ≤ 1/L. Similarly, we
have,

log

(
g(t′)

g(t)

)
≥ −L∥t′ − t∥

g(t′)

g(t)
− 1 ≥ exp (−L∥t′ − t∥)− 1

≥ −L∥t′ − t∥
≥ −(e− 1)L∥t′ − t∥

Hence, ∣∣∣∣g(t′)g(t)
− 1

∣∣∣∣ ≤ (e− 1)L∥t′ − t∥.

This completes the proof.

Proof of Lemma 3.2. Let T = f(X). Condition on Y and let g(t) ≡ g(t; f, Y ). Then, by
Lemma E.3, we have

0 ≤ E
[
ℓ̂bh(T, Y )− ℓ(T, Y )

∣∣∣Y ] ≤ E
[
Y ⊤ (π̂(T − hY )− π̂(T ))

∣∣Y ] .
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We bound this last quantity as follows:

E
[
Y ⊤ (π̂(T − hY )− π̂(T ))

∣∣Y ] (8)

=

∫
g(t)Y ⊤π̂(t− hY )dt−

∫
g(t)Y ⊤π̂(t)dt

=

∫
Y ⊤π̂(t) (g(t+ hY )− g(t)) dt

≤
∫ ∣∣Y ⊤π̂(t)

∣∣ |g(t+ hY )− g(t)| dt

≤ B

∫
g(t)

∣∣∣∣g(t+ hY )

g(t)
− 1

∣∣∣∣ dt
≤ (e− 1)BL∥hY ∥

∫
g(t; f, Y )dt

≤ (e− 1)BLh

Taking the expectation over Y completes the proof.

E.5 Proof for Theorem 3.4

Proof. We bound the uniform error as follows:

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ℓ̂bh (f(Xi), Yi)− E [ℓ (f(Xi), Yi)]

∣∣∣∣∣ ≤ sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ℓ̂bh (f(Xi), Yi)− E
[
ℓ̂bh (f(Xi), Yi)

]∣∣∣∣∣︸ ︷︷ ︸
(i)

+ sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

E
[
ℓ̂bh (f(Xi), Yi)− ℓ (f(Xi), Yi)

]∣∣∣∣∣︸ ︷︷ ︸
(ii)

We first bound (i). Let

Rn
SL(F) = E

[
R̂n

SL(F)
]
= E

[
Eσ

[
sup
f∈F

1

n

n∑
i=1

σiℓ̂
b
h (f(Xi), Yi)

]]
.

By Lemma 2.1b, 0 ≤ ℓ̂bh(f(Xi),Yi)+B
2B ≤ 1. Hence, we can apply a standard Rademacher complexity

result [23, Theorem 3.3] to show for any 0 < δ < 1
2 , with probability at least 1− δ, the following

holds for all f ∈ F simultaneously:

1

n

n∑
i=1

E

[
ℓ̂bh(f(Xi), Yi) +B

2B

]
≤ 1

n

n∑
i=1

ℓ̂bh(f(Xi), Yi) +B

2B
+ 2Rn

SL(F) +

√
1

n
log

(
1

δ

)
.

We can apply an identical argument to −ℓ̂bh(f(Xi),Yi)+B
2B to obtain a similar lower bound. Combining

the two inequalities and taking the union bound, we have that with probability at least 1− 2δ, the
following holds for all f ∈ F simultaneously:∣∣∣∣∣ 1n

n∑
i=1

ℓ̂bh (f(Xi), Yi)− E
[
ℓ̂bh (f(Xi), Yi)

]∣∣∣∣∣ ≤ 4BRn
SL(F) + 2B

√
1

n
log

(
1

δ

)
We next bound Rn

SL(F) by applying Corollary 4 of Maurer [22] to show

Rn
SL(F) = E

[
sup
f∈F

1

n

n∑
i=1

σiℓ̂
b
h (f(Xi), Yi)

]
≤

√
2
B

h
E

[
sup
f∈F

1

n

n∑
i=1

σ⊤
i f(Xi)

]
=

√
2
B

h
Rn(F).

Here we have used the Lipschitz constant from Lemma 2.1a.
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Substituting this bound above and collecting constants shows that with probability at least 1− δ,

(i) ≲
B2

h
Rn(F) +B

√
log (1/δ)

n
.

Finally, we use Lemma 3.2 to bound (ii). Combining proves the result.

E.6 Proof for Theorem 3.7

Proof. We develop an alternative decomposition of the uniform error. Write∣∣∣∣∣ 1n
n∑

i=1

ℓ̂bh (f(Xi), Yi)− E [ℓ (f(Xi), Yi)]

∣∣∣∣∣ ≤

∣∣∣∣∣ 1n
n∑

i=1

ℓ̂bh (f(Xi), Yi)− ℓ (f(Xi), Yi)

∣∣∣∣∣︸ ︷︷ ︸
(i)

(9)

+

∣∣∣∣∣ 1n
n∑

i=1

ℓ (f(Xi), Yi)− E [ℓ (f(Xi), Yi)]

∣∣∣∣∣
Consider (i). We can write

(i) ≤ 1

n

n∑
i=1

∣∣∣ℓ̂bh (f(Xi), Yi)− ℓ (f(Xi), Yi)
∣∣∣

≤ 1

n

n∑
i=1

Y ⊤
i (π̂(f(Xi)− hYi)− π̂(f(Xi)))

=
1

n

n∑
i=1

Y ⊤
i π̂(f(Xi)− hYi)− E

[
Y ⊤
i π̂(f(Xi)− hYi)

]
− 1

n

n∑
i=1

Y ⊤
i π̂(f(Xi))− E

[
Y ⊤
i π̂(f(Xi))

]
+

1

n

n∑
i=1

E
[
Y ⊤
i (π̂(f(Xi)− hYi)− π̂(f(Xi)))

]
≤ 2 sup

h

∣∣∣∣∣ 1n
n∑

i=1

Y ⊤
i π̂(f(Xi)− hYi)− E

[
Y ⊤
i π̂(f(Xi)− hYi)

]∣∣∣∣∣
+

1

n

n∑
i=1

E
[
Y ⊤
i (π̂(f(Xi)− hYi)− π̂(f(Xi)))

]
where the first inequality applies the triangle inequality, the second inequality applies Lemma E.3,
and the last inequality combines similar terms by taking the supremum over h.

Applying this bound in Eq. (9) shows

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ℓ̂bh (f(Xi), Yi)− E [ℓ (f(Xi), Yi)]

∣∣∣∣∣
≤ 3 sup

f̄∈F̄

∣∣∣∣∣ 1n
n∑

i=1

Y ⊤
i π̂(f̄(Xi, Yi))− E

[
Y ⊤
i π̂(f̄(Xi, Yi))

]∣∣∣∣∣︸ ︷︷ ︸
(a)

+ sup
f∈F

1

n

n∑
i=1

E
[
Y ⊤
i (π̂(f(Xi)− hYi)− π̂(f(Xi)))

]
︸ ︷︷ ︸

(b)

where we recall that

F̄ =
{
f̄ : f̄(x, y) = f(x) + hy, for f ∈ F , h ∈ R

}
.
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Component (a) is bounded using Theorem 1 and Theorem 2 of Hu, Kallus, and Mao [14] showing
that with probability at least 1− δ,

(a) ≲ B

√
ν log (|Z∠|+ 1) log(5/δ)

n
.

Component (b) is bounded by Eq. (8) in the proof of Lemma 3.2. Combining (a) and (b) components
proves the result.

E.7 Proof of Theorem 3.8

Proof. Both proofs follow the same general strategy. We start with the first statement. Let

Ln(f) =
1

n

n∑
i=1

ℓ̂bh (f(Xi), Yi) and L(f) = E [ℓ (f(X), Y )]

Since the f̂b minimizes Ln(f) over F and fOR minimizes L(f) over F , we see,

L(f̂b)− L(fOR) = L(f̂b)− Ln(f̂) + Ln(f̂b)− Ln(f
OR) + Ln(f

OR)− L(fOR)

≤ Ln(f̂)− Ln(f
OR)︸ ︷︷ ︸

≤0, by optimality of f̂

+2 sup
f∈F

|Ln(f)− L(f)|

≤ 2 sup
f∈F

|Ln(f)− L(f)|

where the first inequality holds by taking the supremum of the first two and last two pairs, and the
second inequality holds by optimality of f̂ . Taking the expectation of both sides, we see

ERegret(f̂b) ≤ 2E

[
sup
f∈F

|Ln(f)− L(f)|

]

To compute the expectation, we see by Theorem 3.4 and choosing h =
√

B
LRn(F) that

sup
f∈F

|Ln(f)− L(f)| ≤
√
B3LRn(F) +B

√
1

n
log

1

δ
. (10)

with probability at least 1− δ. Rearranging, we have

P

(
sup
f∈F

|Ln(f)− L(f)| −
√
B3LRn(F) ≥ t

)
≤ exp

(
−nt2

B2

)
By tail integration over t and adding back

√
B3LRn(F), it follows that

ERegret(f̂b) ≤ 2E

[
sup
f∈F

|Ln(f)− L(f)|

]
≲
√

B3LRn(F) +
B√
n
,

completing the proof of the first statement.

We now proceed to the second statement. We follow the same line of argument until Eq. (10). Then,
we instead use Theorem 3.7 with h = 1

L
√
n
≤ 1

L to obtain

sup
f∈F

|Ln(f)− L(f)| ≤ C ′B

√
ν log (|Z∠|+ 1) log(1/δ)

n

for some universal constant C0 with probability at least 1− δ. Rearranging we have

P

(
sup
f∈F

|Ln(f)− L(f)| ≥ t

)
≤ exp

(
− nt2

C2
0B

2ν log (|Z∠|+ 1)

)
.

Applying the tail integral gives us

ERegret(f̂b) ≤ 2E

[
sup
f∈F

|Ln(f)− L(f)|

]
≲ B

√
ν log (|Z∠|+ 1)

n

completing the proof.
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Justification: We have read and discussed the code of ethics collectively as authors and are
confident we have not violated it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our work is primarily foundational research in the field of decision-aware
learning, providing the first theoretically grounded approach in mispecified settings. As
foundational work, it has no direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Again, as foundational work, our results do not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The only existing asset used in our paper the PyEPO package, available under
MIT License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide any assets with the paper, only code to assist reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not contain human subject or crowdsourcing research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not contain any human subjects or crowdsourcing experiments.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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